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Abstract
Protein tyrosine phosphatase 1B (PTP 1B), a negative regulator of insulin receptor signaling system, has emerged as a highly
validated, attractive target for the treatment of non-insulin dependent diabetes mellitus (NIDDM) and obesity. As a result
there is a growing interest in the development of potent and specific inhibitors for this enzyme. This quantitative structure-
activity relationship (QSAR) study for a series of formylchromone derivatives as PTP 1B inhibitors was performed using
genetic function approximation (GFA) technique. The QSAR models were developed using a training set of 29 compounds
and the predictive ability of the QSAR model was evaluated against a test set of 7 compounds. The internal and external
consistency of the final QSAR model was 0.766 and 0.785. The statistical quality of QSAR models was assessed by statistical
parameters r2, r2

cv (crossvalidated r2), r2
pred (predictive r2) and lack of fit (LOF) measure. The results indicate that PTP 1B

inhibitory activity of the formylchromone derivatives is strongly dependent on electronic, thermodynamic and shape related
parameters.

Keywords: Quantitative structure-activity relationship (QSAR), genetic function approximation (GFA), protein tyrosine
phosphatase 1B (PTP 1B), non-insulin dependent diabetes mellitus (NIDDM), descriptor, inhibition

Introduction

Insulin resistance in the liver and peripheral tissues

coupled with elevated fasting plasma glucose and

impaired glucose tolerance are the hallmarks of non-

insulin dependent diabetes mellitus (NIDDM) [1].

Protein tyrosine phosphatases (PTPs) constitute a

diverse family of enzymes that function as negative

regulators of insulin signaling cascade and have been

implicated as novel targets for the therapeutic enhance-

ment of insulin action in insulin resistance states [2].

PTP 1B, a cytosolic PTP, appears to play a major role

in insulin sensitivity and the dephosphorylation of the

insulin receptor on the basis of many biochemical and

cellular studies [3]. A recent pivotal PTP 1B knockout

mice study revealed that mice lacking functional PTP

1B exhibited increased sensitivity towards insulin and

are resistant to obesity [4]. These results taken

together, establish a direct role for PTP 1B in down

regulating the insulin function. Recent insights into the

mechanism of insulin actions have demonstrated that

reversible tyrosine phosphorylation of the insulin

receptor and its cellular substrate proteins play a

central role in the mechanism of insulin action.

Among the PTP 1B inhibitors known so far,

ertiprotafib the only drug candidate, developed by

American Home Products, reached the stage of Phase

II clinincal trials, but was withdrawn from clinical trial

due to its undesirable side effects. More recently a

PTP 1B antisence oligonucleotide ISIS-113715,

developed by ISIS Pharmaceuticals inc. is in Phase I

clinical trials [5]. As there is no successful molecule

available in the market for this potential target, there is

an urgent need for developing therapeutically useful

PTP 1B inhibitors.

3D-QSAR methodologies such as comparative

molecular field analysis (CoMFA), comparative

molecular similarity analysis (CoMSIA) and genetic
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function approximation (GFA) are used as valuable

tools in designing new molecules. In this report we

present the results of GFA carried out on formylchro-

mone derivatives, reported as PTP1B inhibitors. We

have used the GFA technique to generate different

QSAR models from various descriptors generated

using Cerius2 molecular modeling software. The GFA

technique was used since it generates a population

of equations rather than one single equation for

correlation between biological activity and physico-

chemical properties. GFA developed by Rogers

involved combination of Friedman’s multivariate

adaptive regresssion splines (MARS) algorithm with

Holland’s genetic algorithm to evolve a population of

equations that best fit the training set data [6]. This is

done as follows:

(i) An initial population of equations is generated

by random choice of descriptors. The fitness of

each equation is scored by a lack-of-fit (LOF)

measure

LOF ¼ LSE={1 2 ½ðc þ d £ pÞ=m�}2

where LSE is least square error, c is the

number of basis functions in the models, d is

the smoothing parameter which controls the

number of terms in the equation, p is the

number of features contained in all terms of

the models and m is the number of compounds

in the training set.

(ii) Pairs from the population of equation are

chosen at random and ‘crossovers’ are per-

formed and progeny equations are generated.

(iii) The fitness of each progeny equation is

assessed by LOF measure.

(iv) If the fitness of the new progeny equation is

better, then it is preserved.

A distinct feature of GFA is that it produces a

population of models. GFA models provide some

useful additional information such as relevance of a

particular descriptor in the model and activity

prediction. GFA has been applied to a set of ellipticine

analogues for different types of anticancer activities

[7]. Recently, GFA was used for binding affinity

predictions of ligands using free energy force field

descriptor terms as in the case of inhibitors of glycogen

phosphorylase [8] and peptidomimetic renin inhibi-

tors [9,10]. GFA has also been used for the QSAR

analysis of steroids, dopamine b-hydroxylase inhibi-

tors [11] and anticancer agents [12]. An interesting

application of GFA is in the QSAR studies on

acetylcholinesterase inhibitors which has resulted in

discovery of a new molecule, E2020, for the treatment

of Alzheimer’s disease [13]. Our strategy follows the

methodology used previously to generate successful

3D-QSAR models and molecular modeling applied

for antifungal [14], antibacterial [15], antiHIV-1 [16],

antidiabetic [17,18], and antitubercular agents [19].

Materials and methods

Chemical data

Molecules. A series of 36 molecules belonging to

formylchromone derivatives as PTP 1B inhibitors

were taken from the literature and used [20,21]. The

3D-QSAR models were generated using a training set

of 29 molecules. The observed and predicted

biological activities of the training set molecules are

presented in Table I. Predictive power of the resulting

models was evaluated by a test set of 7 molecules with

uniformly distributed biological activities. The

observed and predicted biological activities of the

test set molecules are presented in Table II. Selection

of test set molecules was made by considering the fact

that test set molecules represent a range of biological

activity similar to the training set. The mean of the

biological activity of the training and test set was

21.021 and 21.037, respectively. Thus the test set is

a true representative of the training set.

Biological activity

The negative logarithm of the measured IC50 (mM)

against human recombinant PTP 1B (h-PTP 1B)

enzyme as pIC50 (pIC50 ¼ log 1/IC50) was used as

dependent variable, thus correlating the data linear to

the free energy change. Since some compounds

exhibited insignificant/no inhibition, such compounds

were excluded from the present study.

Molecular modeling

Software. All molecular modeling studies were carried

out using Cerius2 (version 4.10 L) running on Redhat

Linux 3.0 [22]. Structures were constructed from the

builder module and partial charges were assigned

using the charge equilibration method within Cerius2

[23]. Throughout the study, Universal forcefield 1.02

was used [24]. The molecules were subsequently

minimized until a root mean square deviation

0.001 kcal/mol Å was achieved and used in the study.

Calculation of descriptors

Different types of descriptors were calculated for each

molecule in the study table using default settings

within Cerius2. These descriptors include electronic,

spatial, structural, thermodynamic and molecular

shape analysis (MSA). A complete list of descriptors

used in the study is given in given Table III.
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Table I. Structures and biological activities of the training set molecules.

No. R1 R2 R3 Obsd. act.a Pred. act.b

1 H H -CH (CH3)2 21.340 21.360

2 H H Cl 21.447 21.396

3 H H Br 21.301 21.496

4 Br H Br 21.301 21.375

5 H H NO2 21.959 22.091

6 H H F 21.740 21.444

7 21.146 21.241

8 21.398 21.251

9 H H -C6H4 C6H5 20.634 20.868

10 H H 20.851 20.758

11 H H 20.398 20.836

12 Br H 21.041 20.715

13 H H 20.987 20.765

14 H H 21.041 20.911

15 Br H 21.204 20.964

16 H H 20.887 21.090

17 Br H 20.914 21.049

18 H H 20.881 20.899
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MSA descriptors. MSA descriptors [25] were

calculated using the MSA module within Cerius2.

As MSA descriptors calculate three-dimensional

properties of the ligands, knowledge of active

conformer of the molecules under study is essential.

The crystallographic conformation of the present

series of molecules is not available / deposited at

protein data bank. Hence conformational analysis on

all molecules was performed using a random sampling

search [26] and Universal force field [24], with the

maximum number of conformers set equal to 150.

The lowest energy conformer of the molecule with the

highest biological activity (compound 26, Table I) was

used as reference for calculation of MSA descriptors.

In the present QSAR study no descriptor related to

ligand-enzyme interactions (such as binding energy)

has been used. Hence we presume that differences

in binding orientations would have no effect on the

conclusions from the present QSAR analysis.

Generation of QSAR models

QSAR analysis in computational research is respon-

sible for the generation of models to correlate

biological activity and physicochemical properties of

a series of compounds. The underlying assumption is

that the variations of biological activity within a series

can be correlated with changes in measured or

Table I – continued

No. R1 R2 R3 Obsd. act.a Pred. act.b

19 Br H 21.00 20.963

20 H H 20.792 20.840

21 Br H 20.892 20.882

22 H H 20.778 21.095

23 H H 20.505 20.677

24 C6H5 H H 21.204 21.125

25 H H 20.0414 20.442

26 C6H5 H 0.000 0.083

27 H H C6H5CH2 21.556 21.159

28 C6H5CH2 H H 21.255 21.139

29 C6H5CH2 H C6H5CH2 21.114 20.859

a Obsd. act ¼ observed biological activity is defined as log 1/ IC50 against human recombinant PTP 1B enzyme (h-PTP 1B) in mM; b Pred.

act ¼ Predicted biological activity calculated using Equation (7) in Table IV.
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computed molecular features of the molecules. In the

present study, the QSAR models were generated by

the GFA technique. The application of the GFA

algorithm allows the construction of high-quality

predictive models and makes available additional

information not provided by standard regression

techniques, even for data sets with many features.

GFA was performed using 100,000 crossovers,

smoothness value of 1.0 and other default settings

for each combination. The number of terms in the

equation was fixed to four including constant in the

training set. The set of equations generated were

evaluated on the following basis: (a) LOF measure; (b)

Variable terms in the equations; (c) Cross validated

and non-cross validated r 2; (d) Randomized cross

validated r 2; (e) Predictive ability of equation. Cross

validated r 2 (r 2 cv), Randomized cross validated r 2,

were calculated using the cross validated test option in

the statistical tools supported in Cerius2.

The predictive r 2 was based only on molecules

not included in the training set and is defined as:

r2
pred ¼ ðSD 2 PRESSÞ=SD, where SD is the sum of

Table II. Structures and observed, predicted activities along with residuals for the test set molecules.

No R1 R2 R3 Obsd. acta Pred. actb Residual

1 H H H 21.863 21.463 20.400

2 Cl H Cl 21.398 21.325 20.073

3 H CH3 Cl 21.255 21.349 0.094

4 H H C6H5 21.146 21.162 0.016

5 H H 20.778 21.049 0.271

6 C6H5 H C6H5 20.519 20.809 0.273

7 C6H5 H C6H5 C6H4 20.301 20.511 0.189

a Obsd. act ¼ observed biological activity is defined as log 1/ IC50 against human recombinant PTP 1B enzyme (h-PTP 1B) in mM; b Pred.

act ¼ Predicted biological activity calculated using Equation (6) in Table IV.

Table III. Descriptors used in the present study.

No Descriptor Type Descriptor

1 Vm Spatial Molecular volumed

2 Area Spatial Molecular surface aread

3 Density Spatial Molecular densityd

4 RadOfGyr Spatial Radius of gyrationd

5 PMI–X Spatial Principle moment of inertia X–component

6 PMI–Y Spatial Principle moment of inertia Y–component

7 PMI–Z Spatial Principle moment of inertia Z–component

8 PMI-mag Spatial Principle moment of inertiad

9 MW Structural Molecular weightd

10 RotlBonds Structural Number of rotatable bondsd

11 HbondAcc Structural Number of hydrogen bond acceptorsd

12 HbondDon Structural Number of hydrogen bond donorsd

13 AlogP98 Thermodynamic Logarithm of partition coefficientd

14 MolRef Thermodynamic Molar refractivityd

15 Dipole-mag Electronic Dipole momentd

16 Dipole–X Electronic Diploe moment–X–component

17 Dipole–Y Electronic Dipole moment–Y–component

18 Dipole–Z Electronic Dipole moment–Z–component

19 Charge Electronic Sum of partial chargesd

20 Apol Electronic Sum of atomic polarizabilitiesd

21 HOMO Electronic Highest occupied molecular orbital energy

22 LUMO Electronic Lowest unoccupied molecular orbital energy

23 Sr Electronic Superdelocalizabilityd

24 Foct Thermodynamic Desolvation free energy for octanol

25 Fh2o Thermodynamic Desolvation free energy for water

26 Hf Thermodynamic Heat of formation

27 DIFFV MSA Difference volume

28 COSV MSA Common overlap steric volume

29 Fo MSA Common overlap volume ratio

30 NCOSV MSA Non-common overlap steric volume

31 Shape RMS MSA RMS to shape reference

32 SR Vol MSA Volume of shape reference compound

d default descriptor
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the squared deviations between the biological activity

of molecules in the test set and the mean biological

activity of the training set molecules and PRESS is

the sum of squared deviations between predicted and

actual activity values for every molecule in the test set.

Like r2
cv the predictive r 2 can assume a negative value

reflecting a complete lack of predictive ability of the

training set for the molecules included in the test

set [27,28].

Results

In the present study, QSAR models were generated

using a training set of 29 molecules (Table I). A test set

of 7 molecules (Table II) with regularly distributed

biological activities was used to assess the predictive

ability of the generated QSAR models. Biological

activity was expressed in terms of pIC50, the negative

logarithm of measured IC50 (mM) against human

recombinant PTP 1B (h-PTP 1B) enzyme. The

conformational space of the rotatable bonds in the

molecules was explored using a random sampling

technique in order to obtain sterically accessible

conformations within optimum computational time.

Conformational search was performed during the

molecular shape analysis (MSA) technique and the

lowest energy conformer of each molecule was used

for alignment using the MSA technique. All the

molecules were superimposed on the lowest energy

conformer of the molecule with highest biological

activity (compound 26). Pharmacophore alignment of

the molecules used in the present study is shown in

Figure 1. The GFA technique was used to generate

the QSAR models. It was observed that in each case

100,000 crossovers and smoothing factor d ¼ 1.0

resulted in optimum internal and external predictivity.

Hence the number of crossovers has been set to

100,000 for all other models.

Significance of molecular descriptors

The Cerius2 QSAR generates different descriptors

belonging to different categories such as confor-

mational, electronic, shape, spatial, thermodynamic,

etc. Interpretation of QSAR models with more terms

becomes difficult for drug design. Moreover all the

terms may not be relevant. To obtain stable and

consistent results from GFA and also to determine

relevant descriptors, we have used a procedure to

select a subset of descriptors, from a much large pool

of descriptors. GFA was run several times by using

molecular descriptors in several combinations to

generate different QSAR models containing not

more than four terms per equation.

Three models were generated using combination of

different descriptors: Model A: Using 20 default

descriptors (Table III, from 1–20 descriptors); Model

B: Default þ Descriptors from 21–26 in Table III

(three electronic and three thermodynamic); Model

C: Descriptors of Model A þ Model B þ six MSA

descriptors (Table III). We have checked the “inter-

variable correlation matrix” (option available within

Cerius2) for the equations in all the models (Models

A, B, C). This parameter was used to filter off the

equations that were showing intercorrelation among

the descriptors, even though those equations showed

good statistical data. All the statistically significant

equations for each QSAR model have been rep-

resented in Table IV. The term BA in the equations

represents biological activity expressed as pIC50

values.

Model A

QSAR equations using GFA were generated using 20

default descriptors (Table III). The resultant equations

were evaluated for their predictive power. The best

equation from the set of equations was selected on the

basis of predictivity, LOF and other statistical

parameters such as F value. Equations (1), (2) and

(3) (Table IV) showed better internal predictivity and

also resulted in better predictions for the test set of

molecules. The variable terms in the equations show

low correlation among themselves indicating low

probability of chance correlation. Equation (1) with

better predictive r 2 value is proposed as the best QSAR

equation for model A with 20 default descriptors for

the present series of molecules.

Model B

This model was built by combination of default, three

thermodynamic and three electronic descriptors. The

generated set of QSAR equations were evaluated on
Figure 1. Pharmacophore alignment of PTP 1B inhibitors used in

the present QSAR study.
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the basis of cross validated r 2, non-cross validated r 2,

LOF and frequency of variables used for model

generation. Three equations were analyzed for their

predictive power. Equation (4) with highest external

predictivity was selected as the best QSAR equation

for Model B (Table IV). Addition of six descriptors to

the QSAR table increased the internal predictivity of

the model moderately.

Model C

Deviation of biological activity for a series of

molecules can be explained on the basis of differences

in the physico-chemical descriptors. Hence, we

considered using shape related descriptors in the

generation of QSAR models. Six MSA descriptors

were calculated using the MSA module added to the

QSAR table, and model C was generated with all

thirty-two descriptors (Table IV). These equations

were analyzed on the basis of cross validated and non-

cross validated r 2, LOF, F value and variable terms in

the equation. The equations and variable terms in the

equations clearly indicate the importance of elec-

tronic, shape and thermodynamic based factors in

governing the biological activity of these compounds.

Detailed statistical analysis of equations resulted in the

identifications of five Equations (7)–(11) (Table IV)

for Model C. Equation (7) (Table IV) was selected as a

single best equation with proper balance of statistical

terms for Model C. Inclusion of MSA based

parameters clearly shows the improvement in the

internal and external predictivity of model C. The

internal predictivity of Equation (7) from Model C is

more than Model A and B equations while external

predictivity of Equation (7) from model C is more

than model B and comparable to model A. This

equation also has low LOF and higher F value than

Model A and B. Therefore, this equation clearly shows

the importance of shape related descriptors. Figures 2

and 3 show the graphs of actual and predicted

activities of the training set molecules and graph of

actual and predicted activities of test set molecules

using Equation (7) from Model C respectively.

Figure 2. A graph of actual versus predicted activities of training

set molecules using Equation (7) of Model C.T
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Equation (7) from Model C with proper balance of

all statistical terms was selected as the best equation to

explain the variance in the biological activity of

formylchromones as PTP 1B enzyme inhibitors. The

observed and predicted biological activities of training

and test set molecules are given in Tables I and II

respectively.

Randomization tests

To determine the model’s reliability and significance,

the randomization procedure was performed at 95%

(19 trials) and 98% (49 trials) confidence levels. The

randomization was carried out by repeatedly permut-

ing the dependent variable set. If the score of the

original QSAR model proved better than those from

the permuted data sets, the model would be considered

statistically significant. The results of randomization

tests are shown in Table V. The correlation coefficient

r 2 for the nonrandomized QSAR model was 0.766,

better than those obtained from the randomized data.

None of the permuted data sets produced an r 2

comparable to 0.766; hence, the value obtained from

the original GFA model is significant.

Discussion

The Cerius2 QSAR module provides different

descriptors divided into categories such as spatial,

structural, electronic, conformational, thermodyn-

amic and shape related descriptors. Among those

some descriptors constitute a default set. Using this

default set we have obtained a reasonably well

predicted model (Model A) with cross validated r 2

(r2cv) of 0.652. Therefore in order to optimize the

internal and external predictivity, the default descrip-

tor set was extended in two different ways by

including, (a) three electronic and three thermodyn-

amic (Model B), (b) Descriptors of Model B þ six

MSA descriptors (Model C), available in the Cerius2

QSAR module to generate different models using

GFA. With these additions the models were greatly

improved in terms of internal and external

consistency.

Interpretation of models

Model A. The equation describing biological activity

for this model is Equation (1) (Table IV) containing

Area–Spatial descriptor, MR–thermodynamic

descriptor and HbondAcc–structural descriptor.

Area, a spatial descriptor is the molecular surface

area that describes the van der Waals area of a

molecule. The molecular surface area determines the

extent to which a molecule exposes itself to the

external environment. This descriptor is related to

binding, transport and solubility. Area is positively

correlated with the biological activity. The shape

reference compound 26 possesses maximum area

while the less active compounds 8 and 9 possess

smaller surface area. It indicates that the active site is

large and favors larger molecules.

MR is also a thermodynamic descriptor. Molecular

refractivity index of a substituent is a combined

measure of its size and polarizability. MR represents

dispersion forces aiding the binding of an inhibitor to

the enzyme, so positive correlation favors this binding.

As MR is an approximation of molecular volume and

its positive correlation with activity indicates that

larger molecules would be more active than the

smaller ones, then, compounds 25 and 26 being larger

show better activity than compounds 5 and 6.

The structural descriptor, HbondAcc strength is

also significantly correlated with log 1/IC50, but the

statistical criteria indicate a lower significance as it is

negatively correlated. This equation showed low

internal as well as external predicitivity. This indicates

that other physicochemical parameters may be

responsible for the variance in the biological activity

of the present set of compounds.

Figure 3. A graph of actual versus predicted activities of test set

molecules using Equation (7) of Model C.

Table V. Results of randomized r 2 for Equation (7) (Model C).

Confidence level Trials r2
nonrandom r2

random SDa SDb r 2 , c r 2 , d

95% 19 0.766 0.098 5.336 0.208 19 0

98% 49 0.766 0.261 3.975 0.204 49 0

a Number of standard deviations of the mean value of r 2 of all random trials to the non-random r 2 value; b Standard deviation of the r 2 values

of all random trials from the mean value of r 2; c Number of r 2 values from random trials that are less than the r 2 value for the non-random trial;
d Number of r 2 values from random trials that are greater than the r 2 value for the non-random trial.
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Model B. Among statistically significant QSAR

Equations (4), (5) and (6) (Table IV) in Model B,

Equation (4) with better predictive r 2 of 0.729 was

selected as the representative for this class. The

variable terms contributing to the biological activity in

Equation (4) from Model B include one electronic

descriptor–Sr, one spatial descriptor–PMI-mag and

one structural descriptor–HbondAcc.

Sr is an electronic parameter. It is an index of

reactivity in aromatic hydrocarbons (AH). This term

was negatively correlated and indicates that the

compounds having higher superdelocalizability show

less activity.

Principal moment of inertia for any body describes

the total mass of the body and its distribution. In the

case of molecules, PMI-mag is a spatial descriptor

describing orientation of the molecules and groups. In

this case the spatial orientation of the molecule (in

other words, conformation of the side chain) appears to

be determining the activity profile. Thus for all the

molecules in this class, similar conformation of the side

chain is essential for activity. Requirement of confor-

mational rigidity is important since structurally rigid

elements are absent in these molecules. The import-

ance of HbondAcc, a structural descriptor which

appeared in the equations is the same as explained

above.

Model C. QSAR equations for model C were generated

using thirty-two descriptors (Table III). Equation (7)

(Table IV) with better internal and external

predictivity was selected as the representative

equation for model C. The variable terms in this

equation are Sr, Foct and COSV.

Structure-activity relationship of PTP 1B inhibitors with

representative QSAR equation

Equation (7) (Model C, Table IV) with good internal

and external predicitivity was selected as representa-

tive equation to explain the variance in the biological

activity of PTP 1B inhibitors from the QSAR Models

A, B, and C. This equation includes one electronic

parameters–Sr, a shape parameter–COSV and a

thermodynamic parameter–Foct contributing to the

biological activity.

Sr. Superdelocalizability, an electronic parameter,

is an index of reactivity of occupied and unoccupied

orbitals. Sr is a second-order perturbation term

indicating both the comparative chemical reactivities

of different molecules and the stabilization energy in

the formation of a complex with another molecule.

Superdelocalizability can be described in three ways,

one for each kind of attack; nucleophilic, electrophilic

and radical. This term was negatively correlated

and indicates that the compounds with higher

superdelocalizability show less activity as in the case

of compound 1 while compound 23 with minimum Sr

within the series shows better activity.

COSV. A shape descriptor, COSV is the common

volume between shape reference and the other

analogues. Because the shape reference molecule

(compound 26) is the one with highest biological

activity and COSV is positively correlated, molecules

that are structurally/conformationally similar to the

most active molecule are expected to exhibit higher

activity. Compounds 23 and 25 which are structurally

and conformationally similar to reference molecule

show better activity than the other compounds in the

series such as 27, 28 and 29.

Foct. Foct, a thermodynamic descriptor which

represents the octanol desolvation free energy of the

molecule is correlated negatively with biological

activity. Negative correlation of this term indicates

that increase in the Foct value would result in decrease

in activity as in the case of compound 5 which with

highest foct value shows least activity and compounds

25 and 26 which with lowest foct values exhibit

maximum activity.

Since most of the PTP 1B inhibitors are polar

molecules containing groups, such as CO, CHO and

O and act by forming H-bonds, steric and electrostatic

interactions, there is hardly any contribution from

desolvation entropy during binding. Hence, there is a

negative correlation with biological activity.

Conclusions

A series of formylchromone derivatives was recently

reported as potent, selective PTP 1B inhibitors with

very good inhibitory activity against human recombi-

nant PTP 1B enzyme. QSAR analysis was performed

using statistical technique GFA, coupled with the use

of combinations of different classes of descriptors.

The generated models were analyzed for their

statistical significance. A randomization test and

intervariable correlations matrix were used to check

the possibility of “chance correlation” for the

generated equations. The models were also validated

for their external prediction power.

GFA handled the physico chemical descriptors

effectively in the generation of QSAR models with

significant statistical terms including external pre-

dictivity. For the current series of molecules the

descriptors COSV, Sr, and Foct appear to contribute

significantly to the observed biological activity. Thus

current QSAR analysis reveals that shape, electronic

and thermodynamic descriptors contribute signifi-

cantly to the biological activity of PTP 1B inhibitors.
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The selected model has good internal and external

predictivity. This equation explains about 77% (r2 ¼

0.766) variance in the biological activity. As the results

from the present QSAR analysis agree with the other

previously reported series these studies may be used

together for the design of newer compounds with

better PTP 1B inhibitory activity.
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